
Importance of Software Metrics to Quantify of
Software Design and Source Code Quality

Siddharth Jain, Pradeep Baniya

Asstistant. Professors, IIST-II

Abstract-The vital role of software process improvement is
ability to measure the current state of system process and
establishing improvement priorities. In addition, the focus on
process improvement has increased the demand for software
measures, or metrics with which to manage the software
process. The need for such metrics is particularly acute when
an organization is adopting new technologies and establishing
best practices for the organization. This paper mainly
addresses the needs of development and implementation of a
new suite of metrics for OO design. Metrics developed based
on literature survey, while contributing the software
development processes, having serious criticisms, which
includes the lack of a theoretical base this suggests that
software metrics need to be constructed with a stronger
degree of theoretical and mathematical rigor. Given the extant
software metrics literature, this paper has a three fold
agenda: 1) To propose metrics that are constructed with a
firm basis in theoretical concepts in measurement and the
ontology of objects, and which incorporate the experiences of
professional software developers; 2) Evaluate the proposed
metrics against established criteria for validity 3) Present
empirical data from commercial projects to illustrate the
characteristics of these metrics on real applications, and
suggest ways in which these metrics may be used.

Keywords: OOD (Object Oriented Design) Metrics, RFC
(Response for a Class), WMC (Weighted Methods per Class),
DIT (Depth of Inheritance Tree).

1. INTRODUCTION

Given the central role that software development plays in
the delivery and application of information technology,
managers are increasingly focusing on process
improvement in the software development area [1]. This
emphasis has had two effects. The first is that this demand
has spurred the provision of a number of new and/or
improved approaches to software development, with
perhaps the most prominent being object orientation (OO).
Second, the focus on process improvement has increased
the demand for software measures, or metrics with which
to manage the process. These include: lacking a theoretical
basis, lacking in desirable measurement properties, being
insufficiently generalized or too implementation
technology dependent, and being too labor-intensive to
collect. [2] Wand and Weber, the theoretical base approach
applies for the metrics was the ontology of Bunge.[4] Six
design metrics are developed, and then analytically
evaluated against Weyuker’s proposed set of measurement
principles. [7] An automated data collection tool was then
developed and implemented to collect an empirical sample
of these metrics at two field sites in order to demonstrate
their feasibility and suggest ways in which project
managers may use these metrics for process improvement.

2. RESEARCH PROBLEM
There are two general types of criticisms that can be
applied to current software metrics. The first category is
that those theoretical criticisms that are leveled at
conventional software metrics as they are applied to
traditional, non-OO software design and development [2].
Kearney, et al. criticized software complexity metrics as
being without solid theoretical bases and lacking
appropriate properties. Vessey and Weber also commented
on the general lack of theoretical rigor in the structured
programming literature. Both Prather and Weyuker
proposed that traditional software complexity metrics do
not possess appropriate mathematical properties, and
consequently fail to display what might be termed normal
predictable behavior. [7] The second category of criticisms
is more specific to OO design and development. The OO
approach centers on modeling the real world in terms of its
objects, which is in contrast to older, more traditional
approaches that emphasize a function-oriented view that
separates data and procedures. Several theoretical
discussions have speculated that OO approaches may even
induce different problem-solving behavior and cognitive
processing in the design process, Given the fundamentally
different notions inherent in these two views, it is not
surprising to find that software metrics developed with
traditional methods in mind do not readily lend themselves
to OO notions such as classes, inheritance, encapsulation
and message passing. Therefore, given that current
software metrics are subject to some general criticism and
are easily seen as not supporting key OO concepts, it seems
appropriate to develop a set, or suite of new metrics
especially designed to measure unique aspects of the OO
approach. The shortcomings of existing metrics and the
need for new metrics especially designed for OO have been
suggested by a number of authors. Tegarden et al. and
Bilow have called for theoretical rigor in the design of OO
metrics. The challenge is therefore to propose metrics that
are firmly rooted in theory and relevant to practitioners in
organizations. Coplien suggests a number of rules of thumb
for OO programming in C++ Moreau and Dominick
suggest three metrics for OO graphical information
systems, but do not provide formal, testable definitions.
Pfleeger also suggests the need for new measures, and uses
simple counts of objects and methods to develop and test a
cost estimation model for OO development.[1] Lake and
Cook prescribe metrics for measurement of inheritance in
C++ environments, and have gathered data from an
experimental system using an automated tool.. However,
despite the active interest in this area, no empirical metrics
data from commercial object oriented applications have
been published in the archival literature.

Siddharth Jain et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 4873-4879

www.ijcsit.com 4873

3. THEORY BASE FOR OOD METRICS
While there are many object oriented design (OOD)
methodologies, one that reflects the essential features of
OOD is presented by Booch.[3] He outlines four major
steps involved in the object-oriented design process.
1) Identification of Classes (and Objects): In this step,

key abstractions in the problem space are identified
and labeled as potential classes and objects.

2) Identify the Semantics of Classes (and Objects): In this
step, the meaning of the classes and objects identified
in the previous step is established, this includes
definition of the life-cycles of each object from
creation to destruction.

3) Identify Relationships Between Classes (and Objects):
In this step, class and object interactions, such as
patterns of inheritance among classes and pattems of
visibility among objects and classes (what classes and
objects should be able to “see” each other) are
identified.

4) Implementation of Classes (and Objects): In this step,
detailed internal views are constructed, including
definitions of methods and their various behaviors.
Whether the design methodology chosen is Booch’s
OOD[6] or any of the several other methodologies,
design of classes is consistently declared to be central
to the OO paradigm. As card et al. suggest, class
design is the highest priority in OOD [6], and since it
deals with the functional requirements of the system, it
must occur before systems design (mapping objects to
processors, processes) and program design (reconciling
of functionality using the target languages, tools, etc.)
Given the importance of class design, the metrics
outlined in this paper specifically are designed to
measure the complexity in the design of classes. The
limitation of this approach is that possible dynamic
behavior of a system is not captured. Since the
proposed metrics are aimed at assessing the design of
an object oriented system rather than its specific
implementation, the potential benefits of this
information can be substantially greater than metrics
aimed at later phases in the life-cycle of an application.
In addition, implementation-independent metrics will
be applicable to a larger set of users, especially in the
early stages of industry’s adoption of OO before
dominant design standards emerge.

4. EMPIRICAL DATA COLLECTION

As defined earlier, a design encompasses the implicit ideas
designers have about complexity. These viewpoints are the
empirical relations [10] RI,R P,. . . R, in the formal
definition of the design D. The viewpoints that were used
in constructing the metrics presented in this paper were
gathered from extensive collaboration with a highly
experienced team of software engineers from a software
development organization. This organization has used
OOD in more than four large projects over the past five
years. Though the primary development language for all
projects at this site was C++, the research aim was to
propose metrics that were language independent. As a test
of this, later data were collected at two new sites which

used different languages.
The metrics proposed in this paper were collected using
automated tools developed for this research at two different
organizations which will be referred to here as Site A and
Site B. Site A is a software vendor that uses OOD in their
development work and has a collection of different C++
class libraries. [5] Metrics data from 634 classes from two
C++ class libraries that are used in the design of graphical
user interfaces (GUI) were collected. Both these libraries
were used in different product applications for rapid
prototyping and development of windows, icons and
mouse-based interfaces. Reuse across different applications
was one of the primary design objectives of these libraries.
These typically were used at Site A in conjunction with
other C++ libraries and traditional C-language programs in
the development of software sold to UNIX workstation
users. Site B is a semiconductor manufacturer and uses the
Smalltalk programming language for developing flexible
machine control and manufacturing systems. Metrics were
collected on the class libraries used in the implementation
of a computer aided manufacturing system for the
production of VLSI circuits. Over 30 engineers worked on
this application, after extensive training and experience
with object orientation and the Smalltalk environment.
Metrics data from 1459 classes from Site B were collected.

5. RESULTS
5.1 Metric 1: Weighted Methods per Class (WMC)
Definition: Consider Class C1 with methods M1... Mn, that
are defined in the class. Let c1, c2... cn, be the complexity
of the methods. Then:

If all method complexities are considered to be unity, then
WMC = n, the number of methods.
Theoretical Basis: WMC relates directly to Bunge's
definition of complexity of a thing, since methods are
properties of object classes and complexity is determined
by the cardinality of its set of properties. The number of
methods is, therefore, a measure of class definition as well
as being attributes of a class, since attributes correspond to
proper ties.

5.1.1 Viewpoints
1) The number of methods and the complexity of

methods involved is a predictor of how much time and
effort is required to develop and maintain the class.

2) The larger the number of methods in a class the greater
the potential impact on children, since children will
inherit all the methods defined in the class.

3) Classes with large numbers of methods are likely to be
more application specific, limiting the possibility of
reuse.

Table 1. Summary Statistics of WMC
Site Metric Medium Max Min
A WMC 5 106 0
B WMC 10 345 0

Siddharth Jain et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 4873-4879

www.ijcsit.com 4874

5.1.2 Empirical Data
The histograms (Figure. 1 and Figure. 2) and summary
statistics (Table 1) from both sites are shown above.
5.1.3 Interpretation of Data:
The most interesting aspect of the data is the similarity in
the nature of the distribution of the metric values at Site A
and B, despite differences in 1) the nature of the
application; 2) the people involved in their design; and 3)
the languages (C++ and Smalltalk) used. This seems to
suggest that most classes tend to have a small number of
methods (0 to lo), while a few outliers declare a large
number of them. Most classes in an application appear to
be relatively simple in their construction, providing specific
abstraction and functionality.

5.2 Metric 2: Depth of Inheritance Tree (DIT)
Definition: Depth of inheritance of the class is the DIT
metric for the class. In cases involving multiple
inheritances, the DIT will be the maximum length from the
node to the root of the tree. Theoretical Basis: DIT relates
to Bunge’s notion of the scope of properties. DIT is a
measure of how many ancestor classes can potentially
affect this class.
5.2.1 Viewpoints
1. The deeper a class is in the hierarchy, the greater the

number of methods it is likely to inherit, making it
more complex to predict its behavior.

2) Deeper trees constitute greater design complexity,
since

3) The deeper a particular class is in the hierarchy, the
more methods and classes are involved. Greater the
potential reuse of inherited methods.

5.2.2 Empirical Data

The histograms are shown in Figure. 9 and 10, and the
summary statistics are shown in Table 2 (all metric values
are integers).
Table 2. Summary Statistics of DIT Metric
Site Metric Medium Max Min
A DIT 1 8 0
B DIT 13 10 0

5.2.3 Interpretation of Data
Both Site A and B libraries have a low median value for the
DIT metric. This suggests that most classes in an
application tend to be close to the root in the inheritance
hierarchy. By observing the DIT metric for classes in an
application, a senior designer or manager can determine
whether the design is “top heavy” (too many classes near
the root) or “bottom heavy” (many classes are near the

bottom of the hierarchy). At both Site A and Site B, the
library appears to be top heavy, suggesting that designers
may not be taking advantage of reuse of methods through
inheritance. Note that the Smalltalk application has a higher
depth of inheritance due, in part, to the library of reusable
classes that are a part of the language. For example, all
classes are subclasses of the class “object”. Another
interesting aspect is that the maximum value of DIT is
rather small (10 or less). One possible explanation is that
designers tend to keep the number of levels of abstraction
to a manageable number in order to facilitate
comprehensibility of the overall architecture of the system.
Designers may be forsaking reusability through inheritance
for simplicity of understanding. This also illustrates one of
the advantages of gathering metrics of design complexity in
that a clearer picture of the conceptualization of software
systems begins to emerge with special attention focused on
design tradeoffs. Examining the class at Site A with a DIT
value of 8 revealed that it was a case of increasingly
specialized abstractions of a graphical concept of control
panels. The class itself had only 4 methods and only local
variables, but objects of this specialized class had a total of
132 methods available through inheritance. Designing this
class would have been a relatively simple task, but the
testing could become more complicated due to the high
inheritance. 21 resources between design and testing could
be adjusted accordingly to reflect this.

5.3 Metric 3: Number Of Children (NOC)
Definition: NOC = number of immediate subclasses
subordinated to a class in the class hierarchy. Theoretical
Basis: NOC relates to the notion of scope of properties. It
is a measure of how many subclasses are going to inherit
the methods of the parent class.

Siddharth Jain et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 4873-4879

www.ijcsit.com 4875

Inter
5.3.1 Viewpoints:
1) Greater the number of children, greater the reuse,
since inheritance is a form of reuse.
2) Greater the number of children, the greater the
likelihood of improper abstraction of the parent class. If a
class has a large number of children, it may be a case of
misuse of sub-classing.
3) The number of children gives an idea of the potential
influence a class has on the design. If a class has a large
number of children, it may require more testing of the
methods in that class.

5.3.2 Empirical Data:
The summary statistics from both sites are shown in table 3

Table 3. Summary Statistics of NOC Metric

Site Metric Medium Max Min
A NOC 0 42 0
B NOC 0 50 0

5.3.3 Interpretation of Data
Like the WMC metric, an interesting aspect of the NOC
data is the similarity in the nature of the distribution of the
metric values at Site A and B. This seems to suggest that
classes in general have few immediate children and that
only a very small number of outliers have many immediate
subclasses. This further suggests that designers may not be
using inheritance of methods as a basis for designing
classes, as the data from the histograms show that a
majority of the classes (73% at Site A and 68% at Site B)
have no children. Considering the large sample sizes at
both sites and their remarkable similarity, both the DIT and
NOC [8] data seem to strongly suggest that reuse through
inheritance may not be being fully adopted in the design of
class libraries, at least at these two sites. One explanation
for the small NOC [8] count could be that the design
practice followed at the two sites dictated the use of
shallow inheritance. A different explanation could be a lack
of communication between different class designers and
therefore that reuse opportunities are not being realized.

Whatever the reason, the metric values and their
distribution provide designers and managers with an
opportunity to examine whether their particular design
philosophy is being adhered to in the application. An
examination of the class with 42 subclasses at Site A was a
GUI-command class for which all possible commands were
separate subclasses. Further, none of these subclasses had
any subclasses of their own. Systematic use of the NOC [8]
metric could have helped to restructure the class hierarchy
to exploit common characteristic of different commands
(e.g., text commands, mouse commands etc.).

5.4 Metric 4: Coupling Between Object classes (CBO)
Definition: CBO for a class is a count of the number of
other classes to which it is coupled.
Theoretical Basis: CBO relates to the notion that an object
is coupled to another object if one of them acts on the
other, i.e., methods of one use methods or instance
variables of another. As stated earlier, since objects of the
same class have the same properties, two classes are
coupled when methods declared in one class use methods
or instance variables defined by the other class.
5.4.1 Viewpoints
1) Excessive coupling between object classes is

detrimental to modular design and prevents reuse. The
more independent a class is, the easier it is to reuse it
in another application.

2) In order to improve modularity and promote
encapsulation, inter-object class couples should be kept
to a minimum. The larger the number of couples, the
higher the sensitivity to changes in other parts of the
design, and therefore maintenance is more difficult.

3) A measure of coupling is useful to determine how
complexes the testing of various parts of a design are
likely to be. The higher the inter-object class coupling,
the more rigorous the testing needs to be.

5.4.2 Empirical Data
The histograms and summary statistics from both sites are
shown in Table 4.

Table 4. Summary Statistics of CBO Metric

Site Metric Medium Max Min

A CBO 0 8 0
B CBO 9 234 0

5.4.3 Interpretation of Data
Both Site A and Site B class libraries have skewed
distributions for CBO, but the Smalltalk application at Site
B has relatively high median values. One possible
explanation is that contingency factors (e.g., type of
application) are responsible for the difference. A more
likely reason is the difference between the Smalltalk and
C++ languages? Smalltalk requires virtually every
interaction between run-time entities be done through
message passing, while C++ does not. In Smalltalk, simple
scalar variables (integers, real, and characters) and control
flow constructs, while, repeat statements are objects. Each
of these invocations is performed via message passing

Siddharth Jain et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 4873-4879

www.ijcsit.com 4876

which will be counted as an interaction in the CBO metric
[9]. Simple scalars will not be defined as C++ classes, and
certainly control flow entities are not objects in C++. Thus,
CBO values are likely to be smaller in C++ applications.
However, that does not explain the similarity in the shape
of the distribution. One interpretation that may account for
both the similarity and the higher values for Site B is that
coupling between classes is an increasing function of the
number of classes in the application. The Site B application
has 1459 classes compared to the 634 classes at Site A. It is
possible that complexity due to increased coupling is a
characteristic of large class libraries. This could be an
argument for a more informed selection of the scale size (as
measured by number of classes) in order to limit coupling.
The low median values of coupling at both sites suggest
that at least 50% of the classes are self-contained and do
not refer to other classes (including super-classes). Since a
fair number of classes at both sites have no parents or no
children, the limited use of inheritance may be also
response for the small CBO [9] values. Examination of the
outliers at Site B revealed that classes responsible for
managing interfaces have high CBO [9] values. These
classes tended to act as the connection point for two or
more subsystems within the same application. At Site A,
the class with the highest CBO value was also the class
with the highest NOC value, further suggesting the need to
re-evaluate that portion of the design. The CBO metric can
be used by senior designers and project managers as a
relative simple way to track whether the class hierarchy is
losing its integrity, and whether different parts of a large
system are developing unnecessary interconnections in
inappropriate places.

5.5 Metric 5: Response For a Class (RFC)
Definition: RFC = IRS(where RS is the response set for the
class
Theoretical Basis: The response set for the class can be RS
= {MI Uall i {Ri}
where { R,} = set of methods called by method i and { M} =
set of all methods in the class. The response set of a class is
a set of methods that can potentially be executed in
response to a message received by an object of that class
26. The cardinality of this set is a measure of the attributes
of objects in the class. Since it specifically includes
methods called from outside the class, it is also a measure
of the potential communication between the class and other
classes.
5.5.1 Viewpoints
1) If a large number of methods can be invoked in

response to a message, the testing and debugging of
the class becomes more complicated since it requires a
greater level of understanding required on the part of
the tester.

2) The larger the number of methods that can be invoked
from a class, the greater the complexity of the class.

3) A worst case value for possible responses will assist in
appropriate allocation of testing time.

5.5.2 Empirical data:
The summary statistics from both sites are shown in Table
5.

Table 5. Summary Statistics of RFC Metric
Site Metric Medium Max Min
A RFC 6 120 0
B RFC 29 422 3

5.5.3 Interpretation of Data:
The data from both Site A and Site B, suggest that most
classes tend to able to invoke a small number of methods,
while a few outliers maybe be most profligate in their
potential invocation of methods. This reinforces the
argument that a small number of classes may be responsible
for a large number of the methods that executed in an
application, either because they contain many methods (this
appears to be the case at Site A) or that they call many
methods. By using high RFC valued classes as structural
drivers, high test coverage can be achieved during system
test. Another interesting aspect is the difference in values
for RFC between Site A and B. Note that the median and
maximum values of RFC at Site B are higher than the RFC
values at Site A. As in the case of the CBO metric, this may
relate to the complete adherence to object oriented
principles in Smalltalk which necessitates extensive
method invocation, whereas
C++’ incremental approach to object orientation gives
designers alterative to message passing through method
inv~cation.~N’ ot surprisingly, at Site B high RFC value
classes performed interface functions within the
application. Since there are a number of classes that are
standalone (i.e. no parents, no children, no coupling) the
RFC values also tend to be low. Again, the metrics
collectively and individually provide managers and
designers a basis for examining the design of class
hierarchies.

5.6 Metric 6: Lack of Cohesion in Methods (LCOM)
Definition: Consider a Class C1 with n methods MI, M2.,
Mn. Let {Ij} = set of instance variables used by method

Theoretical Basis: This uses the notion of degree of
similarity of methods. The degree of similarity for two
methods MI and M2 in class C1 is given by:
σ()={I1}∩{I2}
where {I1}and{I2} instance variables used by MI and M2.
The LCOM is a count of the number of method pairs whose
similarity is 0 (i.e., σ() is a null set) minus the count of
method pairs whose similarity is not zero. The larger the
number of similar methods, the more cohesive the class,
which is consistent with traditional notions of cohesion that
measure the inter-relatedness between portions of a
program. If none of the methods of a class display any
instance behavior, i.e., do not use any instance variables,
they have no similarity and the LCOM value for the class
will be zero. The LCOM value provides a measure of the
relative disparate nature of methods in the class. A smaller
number of disjoint pairs (elements of set P) implies greater
similarity of methods. LCOM is intimately tied to the
instance variables and methods of a class, and therefore is a
measure of the attributes of an object class.

Siddharth Jain et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 4873-4879

www.ijcsit.com 4877

5.6.1 Viewpoints
1) Cohesiveness of methods within a class is desirable,

since it promotes encapsulation.
2) Lack of cohesion implies classes should probably be

split into two or more subclasses.
3) Any measure of disparateness of methods helps

identify flaws in the design of classes.
4) Low cohesion increases complexity, thereby increasing

the likelihood of errors during the development
process.

5.6.2 Empirical Data
The summary statistics from both sites are shown in Table
6.

Table 6. Summary Statistics of LCOM Metric

Site Metric Medium Max Min
A LCOM 0 200 0
B LCOM 2 17 0

5.6.3 Interpretation of Data
At both sites, LCOM median values are extremely low,
indicating that at least 50% of classes have cohesive
methods. In other words, instance variables seem to be
operated on by more than one method defined in the class.
This is consistent with the principle of building methods
around the essential data elements that define a class. The
Site A application has a few outlier classes that have low
cohesion, as evidenced by the high maximum value 200. In
comparison, the Site B application has almost no outliers,
which is demonstrated by the difference in the shape of the
two distributions. A high LCOM value indicates
disparateness in the functionality provided by the class.
This metric can be used to identify classes that are
attempting to achieve many different objectives, and
consequently are likely to behave in less predictable ways
than classes that have lower LCOM values. Such classes
could be more error prone and more difficult to test and
could possibly be disaggregated into two or more classes
that are better defined in their behavior. The LCOM metric
can be used by senior designers and project managers as a
relatively simple way to track whether the cohesion
principle is adhered to in the design of an application and
advice changes, if necessary, at an earlier phase in the
design cycle.

5.6.4 Summary
The Metrics Suite and Booch OOD Steps:
The six metrics are designed to measure the three
implementation steps in Booch’s definition of OOD. Each
metric is one among several that can be defined using
Bunge’s ontological principles. But inclusion in the
proposed suite is influenced by three additional criteria: 1)
ability to meet analytical properties 2) intuitive appeal to
practitioners and managers in organizations and 3) ease of
automated collection. Reading down the columns of Table
VII, WMC, DIT and NOC relate to the first step
(identification of classes) in OOD since WMC is an aspect
of the complexity of the class and both DIT and NOC
directly relate to the layout of the class hierarchy. WMC
and RFC [8] capture how objects of a class may “behave”

when they get messages. For example, if a class has a large
WMC or RFC, it has many possible responses (since a
potentially large number of methods can execute). The
LCOM metric relates to the packaging of data and methods
within a class definition provides a measure of the
cohesiveness of a class. Thus WMC, RFC and LCOM
relate to the second step (the semantics of classes) in OOD.
A benefit of having a suite of metrics is that there is the
potential for multiple measures of the same underlying
construct”. The RFC and CBO metrics also capture the
extent of communication between classes by counting the
inter-class couples and methods external to a given class,
providing a measure of the third step (the relationships
between classes) in OOD.

5.6.5 Future Directions:
The proposed OOD metrics have already begun to be used
in a few leading edge organizations. Sharble and Cohen
report on how these metrics were used by Boeing
Computer Services to evaluate different OO methodologies
[9]. Two implementations of an example system, one is
using responsibility based methodology and another using
data driven methodology were analyzed using these six
metrics.
The application of these metrics is in studying differences
between different OO languages and environments. As the
RFC and DIT data suggest, there are differences across the
two sites that may be due to the features of the two target
languages. However, despite the large number of classes
examined (634 at Site A and 1459 at Site B), only two sites
were used in this study, and therefore no claims are offered
as to any systematic differences between the C++ and
Smalltalk environments. This is suggested as a future
avenue where OO metrics can help establish a preliminary
benchmarking of languages and environments. The most
obvious extension of this research is to analyze the degree
to which these metrics correlate with managerial
performance indicators, such as design, test and
maintenance effort, quality and system performance and
managerial decision making.

6. CONCLUSION AND REMARKS
To analyze some of the issues related to this problem
having some concluding remarks:
1. By using the metrics suite they can identify areas of

the application that may require more rigorous testing
and areas that are candidates for redesign.

2. Using the metrics in this manner, potential flaws and
other leverage points in the design can be identified
and dealt with earlier in the design develop-test-
maintenance cycle of an application.

3. Yet another benefit of using these metrics is the added
insight gained about trade-offs made by designers
between conflicting requirements such as increased
reuse (via more inheritance) and ease of testing (via a
less complicated inheritance hierarchy).

4. These metrics can help in selecting one that is most
appropriate to the goals of the organization, such as
reducing the cost of development, testing and
maintenance over the life of the application. In general

Siddharth Jain et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 4873-4879

www.ijcsit.com 4878

the idea is to use measurement to improve the process
of software development.

This set of six proposed metrics is presented as the first
empirically validated proposal for formal metrics for OOD
[9]. By bringing together the formalism of measurement
theory, Bunge’s ontology, Weyuker’s evaluation criteria
and empirical data from professional software developers
working on commercial projects, this paper seeks to
demonstrate the level of rigor required in the development
of usable metrics for design of software systems. Of course,
there is no reason to believe that the proposed metrics will
be found to be comprehensive, and further work could
result in additions, changes and possible deletions from this
suite. In particular, the LCOM metric might warrant
alterative interpretations since it is currently based on a
data-centered view of cohesion. In addition, these metrics
may also serve as a generalized solution for other
researchers to rely on when seeking to develop specialized
metrics or particular purposes or customized environments.
Further research in moving OO development management
towards a strong theoretical base should help to provide a
basis for significant future progress.

REFERENCES
[1] J. Banerjee, H. Chou, J. Garza, W. Kim, D. Woelk, and N. Ballou,

“Data model issues for object oriented applications,” ACM Trans.
Oflce Inform. Syst., vol. 5, pp. 3-26, 1987.

[2] V. Basili and R. Reiter, “Evaluating automatable measures of
software models,” in IEEE Workshop Quantitative Sofware Models,
Kiamesha, S. C. Bilow, “Applying graph-theoretic analysis models
to object oriented system models,” in OOPSLA 92 Workshop on
Metricsfor ObjectOriented Software Eng., Position Paper, 1992.

[3] G. Booch, Object Oriented Design with Applications. Redwood
City, CA: Benjamin/Cummings, 1991.

[4] Bunge, Treatise on Basic Philosophy: Ontology I : The Furniture of
the World. Boston: Riedel, 1977.

[5] M. Bunge, Treatise on Basic Philosophv: Ontology /I: The World of
Systems. Boston: Riedel. 1979.

[6] D. N. Card and W. W. Agresti, “Measuring software design
complexity,” J . Syst. and Sofh+are, vol. 8, pp. 185-197, 1988.

[7] J. C. Chemiavsky and C. H. Smith, “On Weyuker’s axioms for
software complexity measures,” IEEE Trans. Sofn*“z Eng., vol. 17,
pp. 636-638, 1991.

[8] V. Chemiavsky and D. G. Lakhuty, “On the problem ofinformation
system evaluation,” Automatic Documentation and Mathematical
Linguistics, vol. 4, pp. 9-26, 1971.

[9] S. R. Chidamber and C. F. Kemerer, “Towards a metrics suite for
object oriented design,” in Proc. 6th ACM Conf. Object Oriented
Programming. Syst., Lung. and Applicat. (OOPSLA), Phoenix, AZ,
1991,pp. 197-21

[10] P. Coad and E. Yourdon, Object-Oriented Design. Englewood Cliffs,
NJ: Prentice-Hall, 1991.

Siddharth Jain et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 4873-4879

www.ijcsit.com 4879

